Rotations in \mathbf{R}^{3}

A vector $\mathbf{u} \in \Re^{3}$ can be rotated counterclockwise through an angle θ around a coordinate axis by means of a multiplication $\mathbf{P}_{\star} \mathbf{u}$ in which \mathbf{P}_{\star} is an appropriate orthogonal matrix as described below.

Rotation around the x -Axis

$$
\begin{aligned}
& \mathbf{P}_{x}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \\
& \text { Rotation around the } \mathbf{y} \text {-Axis } \\
& \mathbf{P}_{y}=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)
\end{aligned}
$$

Rotation around the z -Axis

$$
\mathbf{P}_{z}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Note: The minus sign appears above the diagonal in \mathbf{P}_{x} and \mathbf{P}_{z}, but below the diagonal in \mathbf{P}_{y}. This is not a mistake - it's due to the orientation of the positive x-axis with respect to the $y z$-plane.

3-D Rotational Coordinates. Suppose that three counterclockwise rotations are performed on the three-dimensional solid shown in Figure 5.6.5. First rotate the solid in View (a) 90° around the x-axis to obtain the orientation shown in View (b). Then rotate View (b) 45° around the y-axis to produce View (c) and, finally, rotate View (c) 60° around the z-axis to end up with View (d). You can follow the process by watching how the notch, the vertex \mathbf{v}, and the lighter shaded face move.

